Exohedral Derivatization of an Endohedral Metallofullerene Gd@C₈₂

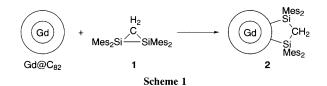
Takeshi Akasaka,*ª Shigeru Nagase,^b Kaoru Kobayashi,^b Toshiyasu Suzuki,^c Tatsuhisa Kato,^d Kazunori Yamamoto,^e Hideyuki Funasakaª and Takeshi Takahashiª

^a Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

^b Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-03, Japan

e Fundamental Research Laboratories, NEC Corporation, Miyukigaoka, Tsukuba 305, Japan

^d Institute for Molecular Science, Myodaiji, Okazaki 444, Japan


^e Nuclear Fuel Technology Development Division, Tokai Works, Power Reactor & Nuclear Fuel Development Corporation, Tokai, Ibaraki 319-11, Japan

Photochemical and thermal reactions of an endohedral metallofullerene Gd@C₈₂ with disilirane afford an exohedral adduct.

Endohedral metallofullerenes [fullerenes with metal(s) inside the cage] are currently of great interest because they could give rise to new chemical entities with novel properties.^{1–3} Most work has concentrated on the production and characterization of these compounds,³ and recent successes include the purification and isolation of La@C₈₂^{4,5} and Gd@C₈₂^{6,7} in milligram quantities. However, little is known about the physical properties⁸ and there have been no reports concerning the chemical properties of these species. Very recently, we have reported the first chemical derivatization of an endohedral metallofullerene La@C₈₂ giving an exohedral adduct.⁹ In this context, it is interesting to see how the chemical properties change with different encapsulated metal atoms. Here we report the chemical derivatization of Gd@C₈₂ in comparison with La@C₈₂.

Gd@C₈₂ was prepared and purified according to our recently developed method.⁷ A toluene solution of Gd@C₈₂ and 1,1,2,2-tetramesityl-1,2-disilirane [(Mes₂Si)₂CH₂] 1 was photoirradiated at 20 °C with a tungsten-halogen lamp (cutoff <400 nm) in a degassed sealed tube (Scheme 1).10,11 The reaction product was analysed by FABMS using *m*-nitrobenzyl alcohol as the matrix. The positive ion FABMS of the product shows the presence of $Gd@C_{82}(Mes_2Si)_2CH_2$ **2** (*m*/*z* 1685–1693), as shown in Fig. 1. No molecular ion peaks ascribable to multiple-addition products such as $Gd@C_{82}$ -[(Mes₂Si)₂CH₂]₂ were observed. The observed ion intensity ratio of a group of peaks for 2 agrees with the carbon and silicon isotope distributions.¹² The ion peak of Gd@C₈₂ at m/z1139-1146 due to a loss of exohedral functional group [(Mes₂Si)₂CH₂] from 2 is a base peak similar to that observed with the exohedral adduct of La@C₈₂(Mes₂Si)₂CH₂.9 It is noteworthy that Gd@C₈₂ is also derivatized by the photochemical reaction with 1 to afford the adduct Gd@C₈₂(Mes₂Si)₂CH₂, as with La@C₈₂.9

In order to investigate further the interesting properties of $Gd@C_{82}$, the thermal reaction with 1 has also been examined. Although disilirane 1 did not add thermally to empty fullerenes such as C_{60} , C_{70} and C_{82} ,⁵ a facile thermal addition to $Gd@C_{82}$ took place. When a toluene solution of $Gd@C_{82}$ and 1 was heated at 80 °C for 1 h, formation of the adduct 2 was verified by FABMS. In an attempt to explain the high thermal reactivity of $Gd@C_{82}$ toward 1, its characteristic electronic properties, *i.e.* electron donor and acceptor characteristics, were examined. The CV of $Gd@C_{82}$ in 1,2-dichlorobenzene shows a set of one reversible and one irreversible reductions (Fig. 2). The differential pulse voltammogram (DPV) also displays five well-defined peaks (Fig. 2). The first oxidation and reduction potentials of $Gd@C_{82}$

are almost the same as those of La@C₈₂,⁸ implying that Gd@C₈₂ is a stronger electron donor and acceptor than empty fullerenes such as C_{60} ,⁸ C_{70} ⁸ and C_{82} (Table 1).

A non-local density function calculation[†] was carried out to help understand the redox behaviour of Gd@C₈₂. It predicts that the ionization potential ($I_p \approx 6.25 \text{ eV}$) and electron affinity

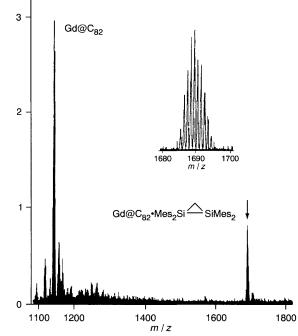


Fig. 1 FABMS of the adduct Gd@ C_{82} (Mes₂Si)₂CH₂ 2 from m/z 1100 to 1800. Inset: expanded view of the m/z 1680–1700 region.

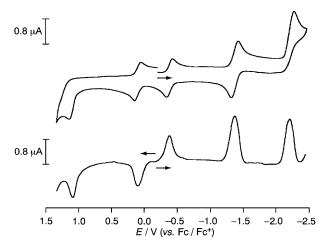


Fig. 2. CV and DPV of Gd@C_{82} at 20 mV s^{-1} in 1,2-dichlorobenzene containing 0.1 mol dm^-3 $Bu^{\rm n}{}_4NPF_6$

C₆₀

C70

 C_{82}

 2.57^{d}

2.694

3.37

	Reactivity ^a					
	hv	heat	$E_{\rm ox}/{\rm V}^b$	$E_{\rm red}/{\rm V}^b$	<i>I</i> _p /eV	$E_{\rm a}/{\rm eV}$
Gd@C ₈₂	Yes	Yes	+0.09	-0.39	6.25	3.20
$La@C_{82}$	Yes	Yes	+0.07 ^c	-0.42^{c}	6.19 ^d	3.22^{d}

+1.21c.e

 $+1.19^{\circ}$

+0.72

Table 1 Reactivities, redox potentials, ionization energies and electron affinities of metallofullerenes and empty fullerenes

No

No

No

^a Yes implies the formation of a 1:1 adduct. No implies no 1:1 adduct was formed and no change in the starting fullerene was observed. ^b Half-cell potentials unless otherwise stated. Values are relative to ferrocene–ferrocenium couple. ^c Ref. 8. ^d Ref. 13. ^e Irreversible. Values were obtained by DPV.

 $(E_a = 3.20 \text{ eV})$ of Gd@C₈₂ are much smaller and larger, respectively, than those for C₆₀ (7.78 and 2.57 eV) and C₇₀ (7.64 and 2.69 eV).¹⁴ This is consistent with Gd@C₈₂ having both low oxidation and reduction potentials, relative to those of C₆₀ and C₇₀.⁸ Although the E_a of C₈₂ (3.37 eV) is comparable to that of Gd@C₈₂, thermal addition of disilirane to C₈₂ is restrained, as with C₆₀ and C₇₀,¹⁰ due to its higher I_p (6.96 eV). In this context, one of the most important findings is that Gd@C₈₂ can also be exohedrally functionalized with 1 both thermally and photochemically.

Yes

Yes

Yes

In conclusion, the chemical reactivities of Gd@C₈₂ towards functionalization with 1 are almost identical to those of La@C₈₂, supported by their similar redox potentials, I_p and E_a .

We thank the Shorai Foundation for Science and Technology and the Ministry of Education, Science and Culture in Japan for financial support.

Received, 18th April 1995; Com. 5/02457I

Footnote

† In the spin-polarized calculation, density-gradient corrections developed by Becke^{13a} and Perdew^{13b} were employed for the exchange and correlation functions, respectively. The relativistic effective core potential and basis set by Cundari and Stevens^{13c} were used on Gd: the s and p orbitals were in their quadruple zeta form while the 4f and 5d orbitals were split into double zeta. The split-valence 3-21G basis set was used for C.^{13d}

References

 -1.12°

 -1.09°

-0.69

1 J. R. Heath, S. C. O'Brien, Q. Zhang, Y. Liu, R. F. Curl, H. W. Kroto, F. K. Tittel and R. E. Smalley, J. Am. Chem. Soc., 1985, 107, 7779.

 7.78^{d}

 7.64^{d}

6.96

- 2 Y. Chai, T. Guo, C. Jin, R. E. Haufler, P. F. Chibante, J. Fure, L. Wang, J. M. Alford and R. E. Smalley, *J. Phys. Chem.*, 1991, **95**, 7564.
- 3 For a review, see: D. S. Bethune, R. D. Johnson, J. R. Salem, M. S. de Vries and C. S. Yannoni, *Nature*, 1993, **366**, 123.
- 4 K. Kikuchi, S. Suzuki, Y. Nakao, N. Nakahara, T. Wakabayashi, H. Shiromaru, K. Saito, I. Ikemoto and Y. Achiba, *Chem. Phys. Lett.*, 1993, **216**, 67.
- 5 K. Yamamoto, H. Funasaka, T. Takahashi and T. Akasaka, J. Phys. Chem., 1994, 98, 2008.
- 6 K. Kikuchi, K. Kobayashi, K. Sueki, S. Suzuki, H. Nakahara, Y. Achiba, K. Tomura and M. Katada, J. Am. Chem. Soc., 1994, 116, 9775.
- 7 H., Funasaka, K. Sakurai, Y. Oda, K. Yamamoto and T. Takahashi, *Chem. Phys. Lett.*, 1995, 232, 273; H. Funasaka, K. Sugiyama, K. Yamamoto and T. Takahashi, *J. Phys. Chem.*, 1995, 99, 1826.
- 8 T. Suzuki, Y. Maruyama, T. Kato, K. Kikuchi and Y. Achiba, J. Am. Chem. Soc., 1993, 115, 11006.
- 9 T. Akasaka, T. Kato, K. Kobayashi, S. Nagase, K. Yamamoto, H. Funasaka and T. Takahashi, *Nature*, 1995, **374**, 600.
- 10 T. Akasaka, W. Ando, K. Kobayashi and S. Nagase, J. Am. Chem. Soc., 1993, 115, 10366.
- 11 T. Akasaka, E. Mitsuhida, W. Ando, K. Kobayashi and S. Nagase, J. Am. Chem. Soc., 1994, **116**, 2627.
- 12 H. Shinohara, H. Sato, Y. Saito, A. Izuoka, T. Sugawara, H. Ito, T. Sakurai and T. Matsuo, *Rapid Commun. Mass Spectrom.*, 1992, 6, 413.
- 13 (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098; (b) J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822; (c) T. R. Cundari and W. J. Stevens, *J. Chem. Phys.*, 1993, **98**, 5555; (d) J. S. Binkley, J. A. Pople and W. J. Hehre, *J. Am. Chem. Soc.*, 1980, **102**, 939.
- 14 S. Nagase and K. Kobayashi, J. Chem. Soc., Chem. Commun., 1994, 1837.